Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep Neural Networks (DNN) are vulnerable to adversarial perturbations — small changes crafted deliberately on the input to mislead the model for wrong predictions. Adversarial attacks have disastrous consequences for deep learning empowered critical applications. Existing defense and detection techniques both require extensive knowledge of the model, testing inputs and even execution details. They are not viable for general deep learning implementations where the model internal is unknown, a common ‘black-box’ scenario for model users. Inspired by the fact that electromagnetic (EM) emanations of a model inference are dependent on both operations and data and may contain footprints of different input classes, we propose a framework, EMShepherd, to capture EM traces of model execution, perform processing on traces and exploit them for adversarial detection. Only benign samples and their EM traces are used to train the adversarial detector: a set of EM classifiers and class-specific unsupervised anomaly detectors. When the victim model system is under attack by an adversarial example, the model execution will be different from executions for the known classes, and the EM trace will be different. We demonstrate that our air-gapped EMShepherd can effectively detect different adversarial attacks on a commonly used FPGA deep learning accelerator for both Fashion MNIST and CIFAR-10 datasets. It achieves a detection rate on most types of adversarial samples, which is comparable to the state-of-the-art ‘white-box’ software-based detectors.more » « less
-
Architecture reverse engineering has become an emerging attack against deep neural network (DNN) implemen- tations. Several prior works have utilized side-channel leakage to recover the model architecture while the an DNN is executing on a hardware acceleration platform. In this work, we target an open- source deep-learning accelerator, Versatile Tensor Accelerator (VTA), and utilize electromagnetic (EM) side-channel leakage to comprehensively learn the association between DNN architecture configurations and EM emanations. We also consider the holistic system – including the low-level tensor program code of the VTA accelerator on a Xilinx FPGA, and explore the effect of such low- level configurations on the EM leakage. Our study demonstrates that both the optimization and configuration of tensor programs will affect the EM side-channel leakage. Gaining knowledge of the association between low-level tensor program and the EM emanations, we propose NNReArch, a lightweight tensor program scheduling framework against side- channel-based DNN model architecture reverse engineering. Specifically, NNReArch targets reshaping the EM traces of different DNN operators, through scheduling the tensor program execution of the DNN model so as to confuse the adversary. NNReArch is a comprehensive protection framework supporting two modes, a balanced mode that strikes a balance between the DNN model confidentiality and execution performance, and a secure mode where the most secure setting is chosen. We imple- ment and evaluate the proposed framework on the open-source VTA with state-of-the-art DNN architectures. The experimental results demonstrate that NNReArch can efficiently enhance the model architecture security with a small performance overhead. In addition, the proposed obfuscation technique makes reverse engineering of the DNN architecture significantly harder.more » « less
-
Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.more » « less
-
While deep learning methods have been adopted in power side-channel analysis, they have not been applied to cache timing attacks due to the limited dimension of cache timing data. This paper proposes a persistent cache monitor based on cache line flushing instructions, which runs concurrently to a victim execution and captures detailed memory access patterns in high- dimensional timing traces. We discover a new cache timing side- channel across both inclusive and non-inclusive caches, different from the traditional “Flush+Flush” timing leakage. We then propose a non-profiling differential deep learning analysis strategy to exploit the cache timing traces for key recovery. We further propose a framework for cross-platform cache timing attack via deep learning. Knowledge learned from profiling a common reference device can be transferred to build models to attack many other victim devices, even in different processor families. We take the OpenSSL AES-128 encryption algorithm as an example victim and deploy an asynchronous cache attack. We target three different devices from Intel, AMD, and ARM processors. We examine various scenarios for assigning the teacher role to one device and the student role to other devices, and evaluate the cross- platform deep-learning attack framework. Experimental results show that this new attack is easily extendable to victim devices • and is more effective than attacks without any prior knowledge.more » « less
-
null (Ed.)With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.more » « less
-
Trained Deep Neural Network (DNN) models have become valuable intellectual property. A new attack surface has emerged for DNNs: model reverse engineering. Several recent attempts have utilized various common side channels. However, recovering DNN parameters, weights and biases, remains a challenge. In this paper, we present a novel attack that utilizes a floating-point timing side channel to reverse-engineer parameters of multi-layer perceptron (MLP) models in software implementation, entirely and precisely. To the best of our knowledge, this is the first work that leverages a floating-point timing side-channel for effective DNN model recovery.more » « less
An official website of the United States government
